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Abstract

Recently, a new approach, called a non-parametric model of random uncertainties, has been introduced
for modelling random uncertainties in linear and non-linear elastodynamics in the low-frequency range.
This non-parametric approach differs from the parametric methods for random uncertainties modelling
and has been developed in introducing a new ensemble of random matrices constituted of symmetric
positive-definite real random matrices. This ensemble differs from the Gaussian orthogonal ensemble
(GOE) and from the other known ensembles of the random matrix theory. The present paper has three
main objectives. The first one is to study the statistics of the random eigenvalues of random matrices
belonging to this new ensemble and to compare with the GOE. The second one is to compare this new
ensemble of random matrices with the GOE in the context of the non-parametric approach of random
uncertainties in structural dynamics for the low-frequency range. The last objective is to give a new
validation for the non-parametric model of random uncertainties in structural dynamics in comparing, in
the low-frequency range, the dynamical response of a simple system having random uncertainties modelled
by the parametric and the non-parametric methods. These three objectives will allow us to conclude about
the validity of the different theories.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The random matrix theory was introduced and developed in mathematical statistics by Wishart
and others in the 1930s and was intensively studied by physicists and mathematicians in the
context of nuclear physics. These works began with Wigner [1] in the 1950s and received an
important effort in the 1960s by Dyson [2], Wigner [3] and Dyson and Mehta [4] and others. In
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1965, Poter [5] published a volume of important papers in this field, followed, in 1967 by the first
edition of the Mehta book [6] whose second edition [7] published in 1991 is an excellent synthesis
of the random matrix theory. For physical applications, the most important ensemble of the
random matrix theory, is the Gaussian orthogonal ensemble (GOE) for which the elements are
constituted of real symmetric random matrices with statistically independent entries and which
are invariant under orthogonal linear transformations.
The random matrix theory has been used in other domains than nuclear physics. In 1984 and

1986, Bohigas et al. [8,9] found that the level fluctuations of the quantum Sinai’s billard were able
to predict with the GOE of random matrices. In 1989, Weaver [10] showed that the higher
frequencies of elastodynamic structures constituted of small aluminium blocks have the behaviour
of the eigenvalues of a matrix belonging to the GOE. Then, Legrand and Schmit [11], Bohigas
et al. [12], Schmit [13], and Legrand et al. [14] studied the high-frequency spectral statistics with
the GOE for elastodynamics and vibration problems in the high-frequency range. More recently,
Langley [15] showed that the system of natural frequencies in the high-frequency range of linear
uncertain dynamic systems is a non-Poisson point-process. All these results have clearly been
validated for the high-frequency range in elastodynamics but not at all for the low- and medium-
frequency ranges.
Recently, a new approach, called a non-parametric model of random uncertainties, has been

introduced [16–20] for modelling random uncertainties in linear and non-linear elastodynamics in
the modal range, that is to say, in the low-frequency range. This non-parametric approach differs
from the parametric [21–24] and stochastic finite element [25–30] methods for random
uncertainties modelling and has been developed in introducing a new ensemble of random
matrices constituted of symmetric positive-definite real random matrices [16,18]. This ensemble
differs from the GOE and from the other known ensembles of the random matrix theory. This
new ensemble is constructed using the maximum entropy principle [31–34] which allows the
probability distribution of positive symmetric real random matrices to be constructed using only
the available information. In order to improve the readability of this paper, one recalls
fundamentals of the non-parametric model of random uncertainties introduced in the papers
mentioned above.
The present paper has three main objectives. The first one is to study the statistics of the

random eigenvalues of random matrices belonging to this new ensemble of symmetric positive-
definite real random matrices. This part will allow some properties of this new ensemble to be
given and to be compared to those of the GOE. The second one is to compare these two ensembles
of random matrices in the context of the non-parametric approach of random uncertainties in
dynamic systems for the low-frequency range. This comparison will be limited to the case for
which only the generalized stiffness matrix of the dynamic system is random, the generalized mass
and damping matrices being deterministic. This limitation is due to the fact that, in the state of the
art, the GOE does not allow a damped dynamic system to be modelled while the new ensemble
allows mass, damping and stiffness random uncertainties to be modelled. Finally, the last
objective of this paper is to give a new validation for the non-parametric model of random
uncertainties in fixed dynamic systems in comparing, in the low-frequency range, the dynamical
response of a simple system having random uncertainties modelled by the parametric and the non-
parametric methods. It should be noted that the extension to the free dynamic systems having
rigid-body modes is straightforward using the additional developments introduced in Ref. [16] for
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the semi-positive-definite real random matrices (instead of the positive-definite set of random
matrices). These three objectives will allow us to conclude about the validity of the different
theories and in particular, about the non-parametric modelling of random uncertainties in
dynamic systems.

1.1. Brief review on the non-parametric model of random uncertainties in vibration analysis

In this paper, MnðRÞ; M
S
n ðRÞ and Mþ

n ðRÞ are the set of all the ðn � nÞ real matrices, the set of all
the symmetric ðn � nÞ real matrices and the set of all the positive-definite symmetric ðn � nÞ real
matrices, respectively. One has Mþ

n ðRÞCMS
n ðRÞCMnðRÞ: If ½A� belongs to MnðRÞ; jj½A�jjF ¼

ðtrf½A�½A�TgÞ1=2 is the Frobenius norm of matrix ½A�; where tr is the trace of the matrices, det is the
determinant of the matrices and ½A�T is the transpose of matrix ½A�: The indicatrix function 1BðbÞ
of any set B is such that 1BðbÞ is equal to 1 if bAB and is equal to zero if beB: The gamma
function is defined for z > 0 by GðzÞ ¼

RþN

0 tz�1 e�t dt: All the random variables are defined on a
probability space ðA;T;PÞ and E is the mathematical expectation.
In this introduction, one briefly recalls the main ideas introduced in Refs. [16–18] concerning

the non-parametric model in elastodynamics and vibrations for the low-frequency range and one
limits the developments to the case of linear dynamic systems.
The two main assumptions introduced to construct such a non-parametric model of random

uncertainties in linear structural dynamics are:
(1) not using the local parameters of the boundary value problem modelling the dynamic

system, but using the generalized co-ordinates directly related to dynamics (non-parametric
approach);
(2) using the available information which is constituted of the mean reduced model constructed

with the n generalized co-ordinates of the mode-superposition method associated with the elastic
modes corresponding to the n lowest eigenfrequencies of the linear dynamic system assumed to be
fixed, damped and stable.
To satisfy these two main assumptions, the non-parametric probabilistic model of random

uncertainties consists in replacing the generalized diagonal mass matrix ½Mn�AMþ
n ðRÞ; the

generalized full damping matrix ½Dn�AMþ
n ðRÞ and the generalized diagonal stiffness matrix

½Kn�AMþ
n ðRÞ of the mean reduced model by the full random matrices ½Mn�; ½Dn� and ½Kn�;

respectively, with values in Mþ
n ðRÞ: The probability model of each random matrix ½Mn�; ½Dn� and

½Kn� is constructed using the entropy optimization principle [32–34] from information theory [31],
using only the available information. For instance, consider the random matrix ½Kn� for which the
available information is constituted of the following constraints.
(C1) The mean value Ef½Kn�g ofM

þ
n ðRÞ-valued random matrix ½Kn� is known and is equal to the

corresponding generalized matrix ½Kn�AMþ
n ðRÞ of the mean reduced model,

Ef½Kn�g ¼ ½Kn�AMþ
n ðRÞ: ð1Þ

(C2) The second order moment Efjj½Kn��1jj
2
Fg of the Frobenius norm of the inverse of random

matrix ½Kn� has to be finite

Efjj½Kn��1jj
2
FgoþN: ð2Þ
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The random matrix ½Kn� has to consist of values in Mþ
n ðRÞ in order to represent a mechanical

system with random uncertainties, which models a fixed and stable dynamic system. For instance
if there were uncertainties in the generalized mass matrix, the probability distribution should be
such that this random generalized mass matrix be positive definite. If not, the probability model
would be wrong because the generalized mass matrix of any dynamic system has to be positive
definite. It seems natural to introduce constraint (C1). Constraint (C2) is absolutely necessary and
allows a unique second order random response of the dynamic system with random uncertainties
to exist as proved in Refs. [18,20].
It should be noted that such a non-parametric model of random uncertainties,
(1) allows the uncertainties for the parameters of the elastodynamic model to be taken into

account (similarly to the parametric approaches, but using a global approach),
(2) but also, allows the model uncertainties to be taken into account, that is to say, modelling

the errors which cannot be reached through the model parameters (by definition, any parametric
approach cannot model the kind of uncertainties which correspond to non existing parameters in
the boundary value problem under consideration); for instance, the use of the thick plate theory
instead of the three-dimensional elasticity, etc.

1.2. Summarizing the probability model for symmetric positive-definite real random matrices

This subsection summarizes part of the results developed in Refs. [16–18], concerning the
construction of the probability model for the random matrix ½Kn� with values in Mþ

n ðRÞ using the
entropy optimization principle for which the available information is defined by Eqs. (1) and (2).
This ensemble of random matrices has been developed for the non-parametric approach of
random uncertainties in the vibration analysis of dynamic systems.
(A) Normalization and dispersion parameter of random matrix ½Kn�: Since ½Kn� is a positive-

definite real matrix, there is an upper triangular matrix ½LKn
� in MnðRÞ (Cholesky factorization)

such that

½Kn� ¼ ½LKn
�T½LKn

�: ð3Þ

Considering Eq. (3), the random matrix ½Kn� can be written as

½Kn� ¼ ½LKn
�T ½GKn

� ½LKn
�; ð4Þ

in which matrix ½GKn
� is a random variable with values in Mþ

n ðRÞ such that

½GKn
� ¼ Ef½GKn

�g ¼ ½In�; ð5Þ

in which ½In� is the ðn � nÞ identity matrix. Let dK > 0 be the real parameter defined by

dK ¼
Efjj½GKn

� � ½GKn
�jj2Fg

jj½GKn
�jj2F

( )1=2

: ð6Þ

The parameter dK allows the dispersion of the probability model of random matrix ½Kn� to be
controlled. If n0X1 is a given and fixed integer, then the dispersion of the probability model is
defined by giving parameter dK ; independent of n; a value such that 0odKofðn0 þ 1Þ=ðn0 þ 5Þg1=2:
This upper bound for dK comes from the theory, is necessary for Eq. (2) to hold and is not a severe
limitation for applications. In general, dimension n of the reduced matrix model is high, greater
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than 10 or 100. For instance, if n is greater than 10, n0 can be chosen as n0 ¼ 10 and consequently,
this upper bound is 0.856 which corresponds to a very high level of uncertainties which is
generally not reached in the applications.
(B) Probability distribution and second order moments of random matrix ½GKn

�: The probability
distribution P½GKn � of random matrix ½GKn

� is defined by a probability density function
½Gn�/p½GKn �ð½Gn�Þ from Mþ

n ðRÞ into Rþ ¼ ½0;þN½; with respect to the measure (volume element)
*dGn on the set MS

n ðRÞ of all the ðn � nÞ real symmetric matrices defined by

*dGn ¼ 2nðn�1Þ=4
Y

1pipjpn

d½Gn�ij: ð7Þ

One then has P½GKn � ¼ p½GKn �ð½Gn�Þ *dGn with the normalization conditionZ
Mþ

n ðRÞ
p½GKn �ð½Gn�Þ *dGn ¼ 1: ð8Þ

Probability density function p½GKn �ð½Gn�Þ is then written as

p½GKn �ð½Gn�Þ ¼ 1Mþ
n ðRÞ

ð½Gn�Þ � CGKn
� ðdet½Gn�Þ

ð1�d2K Þð2d
2
K Þ

�1ðnþ1Þ

� expf�ðn þ 1Þð2d2K Þ
�1 tr½Gn�g; ð9Þ

in which positive constant CGKn
is such that

CGKn
¼

ð2pÞ�nðn�1Þ=4ððn þ 1Þ=2d2K Þ
nðnþ1Þð2d2K Þ

�1

f
Qn

j¼1 Gððn þ 1Þ=2d2K þ ð1� jÞ=2Þg
: ð10Þ

The covariance C
GKn

jk;j0k0 of random variables ½GKn
�jk and ½GKn

�j0k0 ; defined by

C
GKn

jk;j0k0 ¼ Efð½GKn
�jk � ½GKn

�jkÞð½GKn
�j0k0 � ½GKn

�j0k0 Þg; ð11Þ

is written as

C
GKn

jk;j0k0 ¼
d2K

ðn þ 1Þ
fdj0k djk0 þ djj0 dkk0 g; ð12Þ

where djk ¼ 0 if jak and djj ¼ 1: In particular, the variance of random variable ½GKn
�jk is such that

V
GKn

jk ¼
d2K

ðn þ 1Þ
ð1þ djkÞ: ð13Þ

(C) Additional properties of random matrix ½GKn
�: Let b ¼ ðb1;y; bnÞ be any vector in Rn: Its

Euclidean norm jjbjj is such that jjbjj2 ¼ b21 þ?þ b2n: For y fixed in A; the realization ½GKn
ðyÞ��1

of random matrix ½GKn
��1 is a matrix belonging toMþ

n ðRÞ and ½GKn
ðyÞ��1 b is a vector in Rn whose

Euclidean norm is jj½GKn
ðyÞ��1 bjj: One introduces the usual matrix norm jjj½GKn

ðyÞ��1jjj of matrix
½GKn

ðyÞ��1 defined by

jjj½GKn
ðyÞ��1jjj ¼ max

bARn;jjbjj¼1
jj½GKn

ðyÞ��1bjj: ð14Þ

Consequently, jjj½GKn
ðyÞ��1jjj is the Euclidean norm of the largest vector obtained by applying

½GKn
ðyÞ��1 to any vector with a unit Euclidean norm. One then has the following inequality:

8nXn0; Efjjj½GKn
��1jjj2gpCdK

oþN; ð15Þ
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in which CdK
is a positive-finite constant that is independent of n but that depends on dK : The

property defined by Eq. (15) is fundamental to prove the convergence of the random response of
the dynamic system with random uncertainties as dimension n goes to infinity as proved in Ref.
[18].
Let ½G0

Kn
� be the random matrix with values in Mþ

n ðRÞ defined by ½G0
Kn
� ¼ ½Wn�T½GKn

� ½Wn� in
which ½Wn� is any real orthogonal matrix belonging to MnðRÞ: One then has

p½G0
Kn
�ð½G

0
n�Þ *dG0

n ¼ p½GKn �ð½G
0
n�Þ *dG0

n; ð16Þ

which proves the invariance of random matrix ½GKn
� under real orthogonal transformations.

(D) Monte Carlo numerical simulation of random matrix ½GKn
�: The following algebraic

representation of positive-definite real random matrix ½GKn
� allows a procedure for the Monte

Carlo numerical simulation of random matrix ½GKn
� to be defined. Random matrix ½GKn

� can be
written as

½GKn
� ¼ ½LKn

�T ½LKn
�; ð17Þ

in which ½LKn
� is an upper triangular random matrix with values in MnðRÞ such that:

(1) random variables f½LKn
�jj0 ; jpj0g are independent;

(2) for joj0; real-valued random variable ½LKn
�jj0 can be written as ½LKn

�jj0 ¼ snUjj0 in which
sn ¼ dK ðn þ 1Þ�1=2 and where Ujj0 is a real-valued Gaussian random variable with zero mean and
variance equal to 1;
(3) for j ¼ j0; positive-valued random variable ½LKn

�jj can be written as ½LKn
�jj ¼ sn

ffiffiffiffiffiffiffiffi
2Vj

p
in

which sn is defined above and where Vj is a positive-valued gamma random variable for which the
probability density function pVj

ðvÞ with respect to dv is written as

pVj
ðvÞ ¼ 1RþðvÞ

1

Gððn þ 1Þ=2d2K þ ð1� jÞ=2Þ
vðnþ1Þ=2d

2
K�ð1þjÞ=2 e�v: ð18Þ

1.3. Probability model for a random matrix belonging to the GOE

In this subsection, the random matrix ½KGOE
n � with values in MS

n ðRÞ is constructed by using the
Gaussian orthogonal ensemble (GOE) (concerning the GOE, see for instance Ref. [7]). In order to
perform the comparisons with the model summarized in Section 1.2, it is assumed that the mean
value of random matrix ½KGOE

n � is the positive-definite symmetric real matrix ½Kn� defined by
Eq. (1), that is to say

Ef½KGOE
n �g ¼ ½Kn�AMþ

n ðRÞ: ð19Þ

(A) Normalization and dispersion parameter of random matrix ½KGOE
n �: The developments of

Section 1.2(A) are used and consequently, the random matrix ½KGOE
n � can be written as

½KGOE
n � ¼ ½LKn

�T½GGOE
Kn

� ½LKn
�; ð20Þ

in which matrix ½GGOE
Kn

� is a random variable with values in MS
n ðRÞ such that

½GGOE
Kn

� ¼ Ef½GGOE
Kn

�g ¼ ½In�: ð21Þ

In order to compare the two sets of random matrices in the same conditions, the dispersion
parameter of random matrix ½KGOE

n � is taken as parameter dK of random matrix ½Kn�; defined by
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Eq. (6). One then has

Efjj½GGOE
Kn

� � ½GGOE
Kn

�jj2Fg

jj½GGOE
Kn

�jj2F
¼ d2K : ð22Þ

It should be noted that jj½GGOE
Kn

�jj2F ¼ n: As the mean value of a random matrix ½HGOE
n � belonging to

the GOE is such that Ef½HGOE
n �g ¼ ½0�; random matrix ½GGOE

Kn
� constructed with the GOE has to be

written as

½GGOE
Kn

� ¼ ½In� þ ½HGOE
n �; ð23Þ

in which ½HGOE
n � belongs to the GOE, that is to say, is a random matrix with values in MS

n ðRÞ:
Consequently, random matrices ½HGOE

n �; ½GGOE
Kn

� and ½KGOE
n � are not positive matrices almost

surely. Let V
GGOE

Kn

jk be the variance of the random variable ½GGOE
Kn

�jk such that

V
GGOE

Kn

jk ¼ Efð½GGOE
Kn

�jk � ½GGOE
Kn

�jkÞ
2g ¼ Efð½HGOE

n �jkÞ
2g: ð24Þ

Random matrix ½HGOE
n � is constructed for that

V
GGOE

Kn

jk ¼ V
GKn

jk ¼
d2K

ðn þ 1Þ
ð1þ djkÞ; j and kAf1;y; ng: ð25Þ

(B) Probability distribution and second order moments of random matrix ½HGOE
n �: With respect to

the volume element *dHn defined by Eq. (7), the probability density function of random variable
½HGOE

n � belonging to the GOE, such that its second order moments are

Ef½HGOE
n �jkg ¼ ½0�; Efð½HGOE

n �jkÞ
2g ¼

d2K
ðn þ 1Þ

ð1þ djkÞ; ð26Þ

is written as

p½HGOE
n �ð½Hn�Þ ¼ Cn � exp �

ðn þ 1Þ

4d2K
trf½Hn�2g

( )
; ð27Þ

where Cn is the constant of normalization which can easily be calculated. Eq. (27) shows that real-
valued random variables f½HGOE

n �jk; jpkg are mutually independent, second order, centred and
Gaussian.
(C) Additional properties of random matrix ½HGOE

n �: The probability density function of random
matrix ½HGOE

n � defined by Eq. (27) shows that ½HGOE
n � is invariant under real orthogonal

transformations. Random matrix ½HGOE
n � and consequently, random matrices ½GGOE

Kn
� and ½KGOE

n �
are with values in MS

n ðRÞ but not in Mþ
n ðRÞ: Consequently, ½H

GOE
n �; ½GGOE

Kn
� and ½KGOE

n � are not
invertible almost surely and Eq. (15) does not hold neither for ½HGOE

n � nor for ½GGOE
Kn

� or ½KGOE
n �:

(D) Monte Carlo numerical simulation of random matrix ½GGOE
Kn

�: As real-valued random
variables f½HGOE

n �jk; jpkg are mutually independent, second order, centred and Gaussian with
variances given by Eq. (26), then it is easy to perform a Monte Carlo numerical simulation of
random matrix ½GGOE

Kn
� ¼ ½In� þ ½HGOE

n �:
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2. Statistics of the random eigenvalues

2.1. Introducing the random generalized eigenvalue problems

With respect to the generalized co-ordinates q ¼ ð
%
q1;y;

%
qnÞARn associated with the elastic

modes corresponding to the n lowest positive eigenfrequencies 0o
%
o1p?p

%
on of the fixed and

stable mean dynamic system, the mean generalized eigenvalue problem is written (see Section 1.1)
as

½Kn� q ¼
%
l½Mn�q: ð28Þ

The matrix ½Mn�AMþ
n ðRÞ is the mean generalized diagonal mass matrix for which the diagonal

entries are the generalized masses of the elastic modes of the mean dynamic system. The matrix
½Kn�AMþ

n ðRÞ is the mean generalized diagonal stiffness matrix for which the diagonal entries are
the n first eigenvalues 0o

%
l1p?p

%
ln of the mean dynamic system, such that

%
lj ¼

%
o2

j : It should be
noted that the mean generalized eigenvalue problem defined by Eq. (28) gives n-uncoupled
equations for the mean dynamic systems due to the usual orthogonal properties of the elastic
modes for a fixed (or a free) dynamic system. Let us assume that random uncertainties concern
only the stiffness operator (the mass operator is certain for the reason given in the Introduction).
The use of the non-parametric model of random uncertainties for this dynamic system consists in
introducing (see Section 1.1) the random generalized eigenvalue problem associated with Eq. (28),

½Kn�Q ¼ *L ½Mn�Q: ð29Þ

The probability model of the random matrix ½Kn� with values in Mþ
n ðRÞ is defined in Section 1.2

and is such that ½Kn� ¼ ½LKn
�T ½GKn

� ½LKn
� in which ½LKn

�jk ¼
%
l1=2j djk and where the random matrix

½GKn
� with values in Mþ

n ðRÞ is such that

Ef½GKn
�g ¼ ½In�; V

GKn

jk ¼
d2K

ðn þ 1Þ
ð1þ djkÞ: ð30Þ

The positive-valued random eigenvalues of Eq. (29) are denoted 0o *L1;y; *Ln: It should be noted
that the random generalized eigenvalue problem defined by Eq. (29) gives n-coupled random
equations.
In order to compare the two ensembles of random matrices defined in Sections 1.2 and 1.3, a

second random generalized eigenvalue problem is introduced by replacing random matrix ½Kn� by
the random matrix ½KGOE

n � with values in MS
n ðRÞ; defined in Section 1.3, which is such that

½KGOE
n � ¼ ½LKn

�T ½GGOE
Kn

� ½LKn
� where the random matrix ½GGOE

Kn
� with values in Mþ

n ðRÞ is such that

Ef½GGOE
Kn

�g ¼ ½In�; V
GGOE

Kn

jk ¼
d2K

ðn þ 1Þ
ð1þ djkÞ: ð31Þ

This second random generalized eigenvalue problem is then written as

½KGOE
n �QGOE ¼ *LGOE ½Mn�Q

GOE ; ð32Þ
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for which the real-valued random eigenvalues are denoted *LGOE
1 ;y; *LGOE

n : Finally, the order
statistics of random eigenvalues 0o *L1;y; *Ln and *LGOE

1 ;y; *LGOE
n are introduced,

0oL1pL2p?pLn; ð33Þ

LGOE
1 pLGOE

2 p?pLGOE
n : ð34Þ

2.2. Probability density functions and second order moments of the random eigenvalues

Let pLj
ðlÞ dl and pLGOE

j
ðlÞ dl be the probability distributions of random eigenvalues Lj and

LGOE
j ; respectively, corresponding to the order statistics defined by Eqs. (33) and (34). The mean

values mLj
and mLGOE

j
; and the standard deviations sLj

and sLGOE
j

of the random eigenvalues Lj and
LGOE

j are such that

mLj
¼ EfLjg; mLGOE

j
¼ EfLGOE

j g; ð35Þ

s2Lj
¼ EfL2

j g � m2
Lj
; s2LGOE

j
¼ EfðLGOE

j Þ2g � m2
LGOE

j
; ð36Þ

in which the moments of order nX1 are defined by

EfLn
j g ¼

Z þN

0

ln pLj
ðlÞ dl; EfðLGOE

j Þng ¼
Z þN

�N

ln pLGOE
j

ðlÞ dl: ð37Þ

For the general case considered, probability density functions pLj
ðlÞ and pLGOE

j
ðlÞ and the second

order moments cannot be explicitly constructed. This is the reason why an approximation of these
quantities will be constructed by using the Monte Carlo numerical simulation.

2.3. Probability density functions and second order moments of the random normalized spacings
between two consecutive random eigenvalues

The random spacing Dj (or DGOE
j ) between the two consecutive random eigenvalues Lj and Ljþ1

(or LGOE
j and LGOE

jþ1 ) of the order statistics is defined by

Dj ¼ Ljþ1 � Lj ðor DGOE
j ¼ LGOE

jþ1 � LGOE
j Þ; jAf1;y; n � 1g: ð38Þ

The mean value mDj
(or mDGOE

j
) of random variable Dj (or DGOE

j ) is defined by

mDj
¼ EfDjg ðor mDGOE

j
¼ EfDGOE

j gÞ; jAf1;y; n � 1g: ð39Þ

In Section 2.4, one will see that mDj
(or mDGOE

j
) depends on j: As usually, the random normalized

spacing Sj (or SGOE
j ) can be introduced and is defined by

Sj ¼
Dj

mDj

or SGOE
j ¼

DGOE
j

mDGOE
j

 !
; jAf1;y; n � 1g: ð40Þ

It can easily be seen that the mean value mSj
¼ EfSjg (or mSGOE

j
¼ EfSGOE

j g) of random variables
Sj (or SGOE

j ) is independent of j and is such that

mSj
¼ 1 ðor mSGOE

j
¼ 1Þ; jAf1;y; n � 1g: ð41Þ
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For j fixed in f1; 2;y; n � 1g; let pSj
ðsÞ (or pSGOE

j
ðsÞ) be the probability density function with

respect to ds of positive-valued random variable Sj (or SGOE
j ). Let sSj

(or sSGOE
j

) be the standard
deviation of random variable Sj (or SGOE

j ), such that

s2Sj
¼ EfS2

j g � 1 or s2
SGOE

j
¼ EfðSGOE

j Þ2g � 1; ð42Þ

EfS2
j g ¼

Z þN

0

s2pSj
ðsÞ ds or EfðSGOE

j Þ2g ¼
Z þN

0

s2pSGOE
j

ðsÞ ds: ð43Þ

Probability density function pSj
ðsÞ (or pSGOE

j
ðsÞ), and consequently, sSj

(or sSGOE
j

) depends, a priori,
on j (this statement will be verified in Section 2.4). Nevertheless, one will see in Section 2.4, that
function j/sSj

(or j/sSGOE
j

) depends weakly on j: Consequently, following the usual approach
(see for instance Ref. [7]), one introduces the positive-valued spacing random variable S (or SGOE)
such that, for all y fixed in A; S1ðyÞ;y;Sn�1ðyÞ (or SGOE

1 ðyÞ;y;SGOE
n�1 ðyÞ) are ðn � 1Þ independent

realizations of random variable S (or SGOE). It should be noted that this construction corresponds
to an approximation. The probability density function pSðsÞ (or pSGOE ðsÞ) with respect to ds of
positive-valued random variable S (or SGOE) are usually called the spacing probability density
function. Concerning the GOE, the Wigner surmise for the spacing probability density function
consists in writing (see Ref. [7]) that pSGOE ðsÞC pW ðsÞ in which

pW ðsÞ ¼ 1RþðsÞ
p
2

s e�ðp=4Þs2 : ð44Þ

However, a more general probability density function than pW ðsÞ was introduced by Brody [35]
for fitting spacing probability density functions. This probability density function, denoted pBðsÞ;
is written as

pBðsÞ ¼ 1RþðsÞa sa�1 e�bsa ; ð45Þ

in which a > 0; a > 0 and b > 0 are such that
RþN

0 pBðsÞ ds ¼ 1 and
RþN

0 s pBðsÞ ds ¼ 1: One then
gets a ¼ ab and b ¼ fGð1þ 1=aÞga: Taking a ¼ 2 yields pBðsÞ ¼ pW ðsÞ: In Section 2.4, it is proved
that pBðsÞ with ao2 is a better approximation of pSðsÞ and pSGOE ðsÞ than pW ðsÞ:

2.4. Comparison of the two ensembles of random matrices

Below, the ensemble of random matrices defined in Section 1.2 will be called the ‘‘positive-
definite’’ ensemble. One considers the mean reduced system with dimension n ¼ 30; such that, for
all a and b in f1;y; 30g;

½Mn�ab ¼ dab; ½Kn�ab ¼
%
k1

Z þ1

�1 %
j00
aðxÞ

%
j00
bðxÞ dx þ

%
k2

Z þ1

�1 %
jaðxÞ

%
jbðxÞ dx; ð46Þ

in which
%
jaðxÞ ¼ sinðpað1þ xÞ=2Þ and

%
j00
a is the second derivative of

%
ja with respect to x: This

model corresponds to an Euler beam in bending mode, with length 2, simply supported at its ends,
attached to a continuous elastic support along its length, for which the elastic bending modes u

a
are associated with the 30 lowest eigenfrequencies

%
oa such that

%
o2

a ¼
%
la ¼

%
k1

ap
2

� �4
þ
%
k2: ð47Þ
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For all the numerical examples considered in this paper, one takes
%
k1 ¼ 0:9999987 and

%
k2 ¼

2:0278508� 10�7: Consequently, one has 1p
%
lap2 with

%
l1 ¼ 1;

%
l2 ¼ 1:000185;y;

%
l29 ¼

1:873186;
%
l30 ¼ 2: As explained in Section 2.2, the Monte Carlo numerical simulation [36,37]

and the usual mathematical statistics are used to estimate mLj
; mLGOE

j
; mDj

; mDGOE
j

; sLj
; sLGOE

j
; sSj

;

sSGOE
j

and probability density functions pLj
; pLGOE

j
; pSj

ðsÞ; pSGOE
j

ðsÞ; pSðsÞ; pSGOE ðsÞ; defined in

Sections 2.2 and 2.3. Figs. 1–8 (left and right) display the results corresponding to the use of 106

realizations in the computation. There are two groups of figures. Figs. 1–4 correspond to dK ¼
0:25 (weak value of the dispersion parameter) and Figs. 5–8 correspond to dK ¼ 0:50 (strong value
of the dispersion parameter).
(A) Results for dK ¼ 0:25: Fig. 1 compares the graph of function j/mLj

with the graph of
function j/mLGOE

j
(Fig. 1 on the left) and, j/sLj

with j/sLGOE
j

(Fig. 1 on the right), the
functions being defined on the set f1;y; 30g: For this weak value of dispersion parameter dK ; it
can be seen that the second order moments of the random eigenvalues (order statistics) are similar
for the ‘‘positive-definite’’ ensemble and for the GOE. Fig. 2 on the left displays the 30 graphs of
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Fig. 1. Dispersion parameter dK ¼ 0:25: Figure on the left: graphs of functions j/mLj
(thick solid line) and j/mLGOE

j

(thin solid line). Figure on the right: graphs of functions j/sLj
(thick solid line) and j/sLGOE

j
(thin solid line).
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Fig. 2. Dispersion parameter dK ¼ 0:25: Figure on the left: for j ¼ 1;y; 30; graph of function l/pLGOE
j

ðlÞ: Figure on
the right: for j ¼ 1;y; 30; graph of function l/pLj

ðlÞ:
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probability density functions (pdf) fl/pLGOE
j

ðlÞ; j ¼ 1;y; 30g for the GOE. Fig. 2 on the right
displays the 30 graphs of pdf fl/pLj

ðlÞ; j ¼ 1;y; 30g for the ‘‘positive-definite’’ ensemble. For
this weak value of dK ; the graphs are similar for the two ensembles of random matrices. Fig. 3
compares the graph of function j/mDj

with the graph of function j/mDGOE
j

(Fig. 3 on the left)
and , j/sSj

with j/sSGOE
j

(Fig. 3 on the right). The results for the second order moments of the
random spacings are similar for the ‘‘positive-definite’’ ensemble and for the GOE. However, it
should be noted (see Fig. 3 on the right) that sSj

and sSGOE
j

depend lightly on j; as explained in
Section 2.3. Fig. 4a on the left shows the 30 graphs of pdf fs/log10ðpSj

ðsÞÞ; j ¼ 1;y; 30g
compared with the Wigner pdf s/log10ðpW ðsÞÞ: This figure shows that, for s > 2:5; the Wigner pdf
does not fit well pdf fpSj

; j ¼ 1;y; 30g in mean. Fig. 4a on the right shows the graph of pdf
s/log10ðpSðsÞÞ (irregular thick solid line), in which pSðsÞ is estimated as explained in Section 2.3,
compared with the Wigner pdf s/log10ðpW ðsÞÞ (dashed line). For s > 2:5; it can be seen that pW ðsÞ
does not fit well pSðsÞ: Consequently, a Brody pdf s/log10ðpBðsÞÞ has been fitted with a ¼ 1:93
(thin solid line). Fig. 4b (left and right) is similar to Fig. 4a, but correspond to the GOE instead of
the ‘‘positive-definite’’ ensemble. Fig. 4b on the left show pdf fs/log10ðpSGOE

j
ðsÞÞ; j ¼ 1;y; 30g

and s/log10ðpW ðsÞÞ: Fig. 4b on the right shows the graph of pdf s/log10ðpSGOE ðsÞÞ (irregular
thick solid line), s/log10ðpW ðsÞÞ (dashed line) and s/log10ðpBðsÞÞ fitted with a ¼ 1:93 (thin solid
line). The analysis of Figs. 4a and b show that, for the two ensembles of random matrices, the
spacing probability density functions are similar. However, their asymptotic behaviour at infinity
does not follow the Wigner pdf but are better fitted with the Brody pdf with a ¼ 1:93:
(B) Results for dK ¼ 0:50: Figs. 5–8 correspond to Figs. 1–4 for the strong value of dispersion

parameter dK instead of its small value. Fig. 5 compares the graphs of functions j/mLj
with

j/mLGOE
j

(Fig. 5 on the left) and, compare the graphs of functions j/sLj
with j/sLGOE

j
(Fig. 5

on the right). For this strong value of dispersion parameter dK ; the second order moments of the
random eigenvalues (order statistics) are different for the ‘‘positive-definite’’ ensemble and for the
GOE, especially, for the standard deviations. For the ‘‘positive-definite’’ ensemble, j/sLj

is a
monotonic increasing function, that is not the case for function j/sLGOE

j
corresponding to the

GOE. This point constitutes an important difference between the two ensembles. It should be
noted that, in dynamic systems, the random uncertainties increase with frequency and
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Fig. 3. Dispersion parameter dK ¼ 0:25: Figure on the left: graphs of functions j/mDj
(thick solid line) and j/mDGOE

j

(thin solid line). Figure on the right: graphs of functions j/sSj
(thick solid line) and j/sSGOE

j
(thin solid line).
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Fig. 4. (a) ‘‘Positive-definite’’ ensemble; dispersion parameter dK ¼ 0:25: Figure on the left: for j ¼ 1;y; 30; graph of

function s/log10ðpSj
ðsÞÞ (irregular solid lines) and graph of the Wigner pdf s/log10ðpW ðsÞÞ (regular solid line). Figure

on the right: graph of function s/log10ðpSðsÞÞ (irregular thick solid line), graph of the Wigner pdf s/log10ðpW ðsÞÞ
(dashed line) and graph of the Brody pdf s/log10ðpBðsÞÞ with a ¼ 1:93 (thin solid line). (b) Gaussian orthogonal

ensemble; dispersion parameter dK ¼ 0:25: Figure on the left: for j ¼ 1;y; 30; graph of function s/log10ðp
GOE
Sj

ðsÞÞ
(irregular solid lines) and graph of the Wigner pdf s/log10ðpW ðsÞÞ (regular solid line). Figure on the right: graph of

function s/log10ðp
GOE
S ðsÞÞ (irregular thick solid line), graph of the Wigner pdf s/log10ðpW ðsÞÞ (dashed line) and graph

of the Brody pdf s/log10ðpBðsÞÞ with a ¼ 1:93 (thin solid line).
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Fig. 5. Dispersion parameter dK ¼ 0:50: Figure on the left: graphs of functions j/mLj
(thick solid line) and j/mLGOE

j

(thin solid line). Figure on the right: graphs of functions j/sLj
(thick solid line) and j/sLGOE

j
(thin solid line).
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consequently, the standard deviation sLj
has to increase with j from j ¼ 1: This is the case for the

‘‘positive-definite’’ ensemble but not the case for the GOE, i.e., for sLGOE
j

: Fig. 6 on the left
displays the 30 graphs of pdf fl/pLGOE

j
ðlÞ; j ¼ 1;y; 30g for the GOE. Fig. 6 on the right displays

the 30 graphs of pdf fl/pLj
ðlÞ; j ¼ 1;y; 30g for the ‘‘positive-definite’’ ensemble. The ‘‘positive-

definite’’ ensemble yields results very different from the GOE. Those given by the GOE are not
good: in Fig. 6 on the left, it can easily be seen that pLGOE

1
ðlÞ is not equal to zero for lo0: This

means that random eigenvalue LGOE
1 (that is to say the fundamental eigenfrequency of the

dynamic system with random uncertainties) is not positive almost surely, that is not admissible for
a stable dynamic system. In opposite, the ‘‘positive-definite’’ ensemble gives good results. Fig. 7
compares the graphs of functions j/mDj

with j/mDGOE
j

(Fig. 7 on the left) and , j/sSj
with

j/sSGOE
j

(Fig. 7 on the right). Concerning the mean values (Fig. 7 on the left), there is a significant
difference between the two ensembles while the difference is small for standard deviations sSj

and
sSGOE

j
which depend lightly on j: Figs. 8a and b, which correspond to the strong value of dispersion

parameter dK ; are very similar to Figs. 4a and b which correspond to the small value of the
dispersion parameter. Figs. 8a corresponds to the ‘‘positive-definite’’ ensemble and Fig. 8b to the
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Fig. 6. Dispersion parameter dK ¼ 0:50: Figure on the left: for j ¼ 1;y; 30; graph of function l/pLGOE
j

ðlÞ: Figure on
the right: for j ¼ 1;y; 30; graph of function l/pLj

ðlÞ:
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Fig. 7. Dispersion parameter dK ¼ 0:50: Figure on the left: graphs of functions j/mDj
(thick solid line) and j/mDGOE

j

(thin solid line). Figure on the right: graphs of functions j/sSj
(thick solid line) and j/sSGOE

j
(thin solid line).
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GOE. For this strong value of the dispersion parameter, the Brody pdf is well fitted with a ¼ 1:91
instead of a ¼ 1:93 for the small value.

3. Non-parametric model of random uncertainties in vibration analysis

3.1. Definition of the mean reduced model of the dynamic system

One considers a fixed stable linear mean dynamic system for which the Fourier transform
uðx;oÞ with respect to t of the vector-valued displacement field uðx; tÞ; is defined on a bounded
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Fig. 8. (a) ‘‘Positive-definite’’ ensemble; dispersion parameter dK ¼ 0:50: Figure on the left: for j ¼ 1;y; 30; graph of

function s/log10ðpSj
ðsÞÞ (irregular solid lines) and graph of the Wigner pdf s/log10ðpW ðsÞÞ (regular solid line). Figure

on the right: graph of function s/log10ðpSðsÞÞ (irregular thick solid line), graph of the Wigner pdf s/log10ðpW ðsÞÞ
(dashed line) and graph of the Brody pdf s/log10ðpBðsÞÞ with a ¼ 1:91 (thin solid line). (b) Gaussian orthogonal

ensemble; dispersion parameter dK ¼ 0:50: Figure on the left: for j ¼ 1;y; 30; graph of function s/log10ðp
GOE
Sj

ðsÞÞ
(irregular solid lines) and graph of the Wigner pdf s/log10ðpW ðsÞÞ (regular solid line). Figure on the right: graph of

function s/log10ðp
GOE
S ðsÞÞ (irregular thick solid line), graph of the Wigner pdf s/log10ðpW ðsÞÞ (dashed line) and graph

of the Brody pdf s/log10ðpBðsÞÞ with a ¼ 1:91 (thin solid line).
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domain
%
OCRd with dX1; equipped with the measure denoted dx and such that 7

%
O7 ¼

R
%
O dx is the

‘‘volume’’ of domain
%
O: For all o belonging to the frequency band of analysis ½0 ;omax� with

omax > 0; the mean reduced model of dimension nX1 of this mean dynamic system is obtained by
using the usual mode-superposition method. The approximation unðx;oÞ of uðx;oÞ with
dimension n is then written as

unðx;oÞ ¼
Xn

a¼1 %
qaðoÞua

ðxÞ; xA
%
O; ð48Þ

ð�o2½Mn� þ io½Dn� þ ½Kn�Þ qðoÞ ¼ fðoÞ; ð49Þ

in which u
1
;y;u

n
are the elastic modes corresponding to the n lowest eigenfrequencies

0o
%
o1p

%
o2p?p

%
on of the mean dynamic system, qðoÞ ¼ ð

%
q1ðoÞ;y;

%
qnðoÞÞAC

n is the complex
vector of the generalized co-ordinates, fðoÞ ¼ ðf1ðoÞ;y; fnðoÞÞACn is the complex vector of the
generalized external forces, ½Mn�; ½Dn� and ½Kn� belong to Mþ

n ðRÞ and represent the generalized
diagonal mass matrix, the generalized full damping matrix and the generalized diagonal stiffness
matrix, respectively. It is assumed that the mass density of the mean dynamic system is a constant
equal to 1, that

R
%
O u

a
ðxÞ � u

b
ðxÞ dx ¼ dab and that the generalized damping matrix is a diagonal

matrix, such that

½Mn� ¼ dab; ½Dn� ¼ 2
%
x oref dab; ½Kn� ¼

%
o2

adab; ð50Þ

in which
%
x > 0 and oref > 0 are given positive constants. From Eq. (50), it can be deduced that, for

the mean dynamic system, the critical damping rates
%
x1;y;

%
xn of elastic modes u

1
;y;u

n
are given

by
%
xa ¼

%
x oref =

%
oa: It should be noted that for the numerical examples presented in this paper, the

given mean value of the critical damping rates of the elastic modes whose eigenfrequencies are
inside the frequency band of analysis, is taken as 0.001. In this case, the use of Eq. (50) yields as
the minimum value of the critical damping rates

%
xa; the value 0.0009, and as the maximum value,

the value 0.0012. Consequently, for the mean dynamic system, the use of a simple Rayleigh
damping is sufficient in taking into account the objectives of this paper. As observation of the
mean dynamic system, one introduces the positive-valued function o/

%
enðoÞ such that

%
enðoÞ ¼ jjo2½#hnðoÞ�jjF ; ð51Þ

in which ½#hnðoÞ� ¼ ð�o2½Mn� þ io½Dn� þ ½Kn�Þ
�1 is the generalized frequency response function of

the mean dynamic system and jj½A�jjF ¼ ðtrf½A�½A�ngÞ1=2 with ½A�n ¼ %½A�T:

3.2. Non-parametric model of random uncertainties

The non-parametric model of random uncertainties is introduced as explained in Section 1.1.
For preserving the coherence with Section 2.1, it is assumed that only the stiffness operator is
uncertain. Consequently, the use of the ‘‘positive-definite’’ ensemble for the non-parametric
modelling of random uncertainties leads one to the following random generalized frequency
response function of the random dynamic system:

½HnðoÞ� ¼ ð�o2½Mn� þ io½Dn� þ ½Kn�Þ
�1; ð52Þ
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in which the probability model of random matrix ½Kn� is defined in Section 1.2. The random
observation associated with Eq. (51), is the positive-valued random variable EnðoÞ defined by

EnðoÞ ¼ jjo2½HnðoÞ�jjF : ð53Þ

If the generalized stiffness matrix is modelled by the GOE, then ½Kn� is replaced by ½KGOE
n � for

which the probability model is defined in Section 1.3. In this case, EnðoÞ is denoted EGOE
n ðoÞ:

3.3. Comparison of the two ensembles of random matrices

The mean reduced model of the dynamic system is defined in Sections 2.4 and 3.1 with
%
x ¼ 0:01

and oref ¼ 2p� 0:02 rad=s: The frequency band of analysis is such that omax ¼ 2p� 0:22 rad=s:
The value of the dispersion parameter is dK ¼ 0:50: The Monte Carlo numerical simulation
method is carried out with ns ¼ 40 000 realizations, denoted by y1;yyns

; for which the
realizations o/Enðo; y1Þ; y; o/Enðo; yns

Þ are numerically calculated for the two ensembles of
random matrices, with a sampling frequency step Do ¼ omax=300: For o fixed in ½0 ;omax�; the
mean values EfEnðoÞg and EfEGOE

n ðoÞg; and the standard deviations sEn
ðoÞ and sEGOE

n
ðoÞ; of

random variables EnðoÞ and EGOE
n ðoÞ; respectively, are usually estimated. For the comparisons,

one defines the functions n/dBðnÞ and n/dBGOEðnÞ such that

dBðnÞ ¼ log10ðEfEnð2pnÞgÞ; dBGOEðnÞ ¼ log10ðEfE
GOE
n ð2pnÞgÞ: ð54Þ

Finally, for the ‘‘positive-definite’’ ensemble and for the GOE, for all n fixed in ½0;omax=2p�; the
extreme value statistics associated with realizations y1;y; yns

are defined by

dBmaxðnÞ ¼ log10 max
k

Enð2pn; ykÞ
� �

; dBminðnÞ ¼ log10 min
k

Enð2pn; ykÞ
� �

; ð55Þ

dBGOE
max ðnÞ ¼ log10 max

k
EGOE

n ð2pn; ykÞ
� �

; dBGOE
min ðnÞ ¼ log10 min

k
EGOE

n ð2pn; ykÞ
� �

: ð56Þ

Figs. 9 and 10 are relative to the frequency band ½0; 0:22�Hz: Fig. 9 on the left displays (1) the
response n/log10

%
enð2pnÞ of the mean dynamic system (dashed line), (2) the graphs of functions
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Fig. 9. Non-parametric approach. Dispersion parameter dK ¼ 0:50: Frequency band ½0; 0:22�Hz (horizontal axis).

Figure on the left: graphs of functions n/log10
%
enð2pnÞ (dashed line), n/dBðnÞ (thick solid line) and n/dBGOEðnÞ (thin

solid line). Figure on the right: graphs of functions n/sEn
ð2pnÞ (thick solid line) and n/sEGOE

n
ð2pnÞ (thin solid line).
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n/dBðnÞ (thick solid line) and n/dBGOEðnÞ (thin solid line). Fig. 9 on the right displays the
graphs of functions n/sEn

ð2pnÞ (thick solid line) and n/sEGOE
n

ð2pnÞ (thin solid line). Fig. 9 shows
an important difference between the ‘‘positive-definite’’ ensemble and the GOE. As proved in
Section 2.4(B), for the GOE, the first random eigenvalues (the lowest eigenvalues of the order
statistics) have a larger standard deviation than for the ‘‘positive-definite’’ ensemble and their
probability distributions are different. This is the reason why the mean value and the standard
deviation of the random responses are very different in the frequency band ½0; 0:1�Hz for the two
ensembles of random matrices. These differences can also be seen in Fig. 10 which shows (1) for
the ‘‘positive-definite’’ ensemble, the graphs of functions n/dBðnÞ (thick dashed line),
n/dBmaxðnÞ (upper thick solid line), n/dBminðnÞ (lower thick solid line), (2) for the GOE, the
graphs of functions n/dBGOEðnÞ (thin dashed line), n/dBGOE

max ðnÞ (upper thin solid line),
n/dBGOE

min ðnÞ (lower thin solid line).

4. A validation point for the non-parametric model of random uncertainties in vibration analysis

4.1. Setting the problem

As explained in Section 1.1 of the introduction, the non-parametric model of random
uncertainties in vibration analysis has been introduced to replace the usual parametric model for
complex dynamic systems when the number of uncertain local parameters is large and above all,
to take into account the model uncertainties which cannot be modelled with the parametric
models. Nevertheless, as Section 3 shows that the results given by the two ensembles of random
matrices are very different, it is interesting to analyze a simple dynamic system with random
uncertainties which can easily be modelled by using the usual parametric approach, in order to
conclude if the use of the ‘‘positive-definite’’ ensemble is better than the use of the GOE for the
non-parametric model of random uncertainties in low-frequency vibration analysis.
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Fig. 10. Non-parametric approach. Dispersion parameter dK ¼ 0:50: For the ‘‘positive-definite’’ ensemble: graphs of
functions n/dBðnÞ (thick dashed line), n/dBmaxðnÞ (upper thick solid line), n/dBminðnÞ (lower thick solid line). For

the Gaussian orthogonal ensemble, graphs of functions n/dBGOEðnÞ (thin dashed line), n/dBGOE
max ðnÞ (upper thin solid

line), n/dBGOE
min ðnÞ (lower thin solid line).
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Consequently, one considers the dynamic system with parametric random uncertainties for which
the associated mean dynamic system is defined in Section 2.4 and which is used in Section 3.

4.2. Defining the dynamic system with parametric random uncertainties

One considers a dynamic system with parametric random uncertainties on the stiffness
operator, for which the mean dynamic system is defined in Sections 2.4 and 3.1. In the frequency
domain, the weak formulation of the corresponding boundary value problem is written as

� o2

Z þ1

�1
Uðx;oÞ vðxÞ dx þ 2io

%
xoref

Z þ1

�1
Uðx;oÞ vðxÞ dx þ

%
k1

Z þ1

�1
Y ðxÞU 00ðx;oÞv00ðxÞ dx

þ
%
k2

Z þ1

�1
TðxÞ Uðx;oÞ vðxÞ dx ¼

Z þ1

�1
gðx;oÞ vðxÞ dx; ð57Þ

in which v00 is the second derivative of v with respect to x and where the test function v belongs to
the admissible function space constituted of the ‘‘sufficiently differentiable’’ real-valued functions
v defined on

%
O ¼� � 1;þ1½ and such that vð�1Þ ¼ vðþ1Þ ¼ 0 and v00ð�1Þ ¼ v00ðþ1Þ ¼ 0: The

external excitation is represented by the complex-valued force field x/gðx;oÞ define on
%
O: In

Eq. (57),
%
x and oref are defined in Section 3.3 and,

%
k1 and

%
k2 are defined in Section 2.4. Parameters

Y ðxÞ and TðxÞ are second order stochastic processes indexed by
%
O with values in Rþ; statistically

independent, such that

EfY ðxÞg ¼ 1; EfTðxÞg ¼ 1; 8xA
%
O: ð58Þ

For x fixed in
%
O; Y ðxÞ and TðxÞ are written as

Y ðxÞ ¼
1

mY

XmY

j¼1

ZY
j ðxÞ

2; TðxÞ ¼
1

mT

XmT

j¼1

ZT
j ðxÞ

2; ð59Þ

in which mYX1 and mTX1 are two finite positive integers and where ZY
1 ;y;ZY

mY
; ZT

1 ;y;ZT
mT

are
mY þ mT independent copies of a stochastic process Zb defined as follows. Stochastic process
fZbðxÞ;xARg is indexed by R with values in R; second order, centred, Gaussian and stationary,
such that

EfZbðxÞg ¼ 0; EfZbðxÞ
2g ¼ 1: ð60Þ

Let SZb
ðkÞ be its power spectral density function defined on R with values in Rþ; related to its

autocorrelation function RZb
ðZÞ ¼ EfZbðx þ ZÞZbðxÞg by the equation

RZb
ðZÞ ¼

Z
R

eikZ SZb
ðkÞ dk:

Power spectral density function is defined by

SZb
ðkÞ ¼

L

pa

1

ð1þ L2k2Þ
1½�b;b�ðkÞ; ð61Þ
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in which 0oboþN is a finite positive real constant and where a is such that a ¼
ð2=pÞ arctanðbLÞ: It can then verified that

s2Y ¼ EfY ðxÞ2g � 1 ¼
2

mY

; s2T ¼ EfTðxÞ2g � 1 ¼
2

mT

: ð62Þ

4.3. Constructing the random reduced model

The random reduced model of dimension n is obtained by using the n elastic modes u
1
;y;u

n
introduced in Section 2.4, associated with the n lowest eigenfrequencies

%
o1;y;

%
on defined by

Eq. (47). From Eq. (57), it can be deduced that the approximation Unðx;oÞ of Uðx;oÞ is written as

Unðx;oÞ ¼
Xn

a¼1

QaðoÞua
ðxÞ; xA

%
O; ð63Þ

ð�o2 ½Mn� þ io½Dn� þ ½Kparam
n �ÞQðoÞ ¼ fðoÞ; ð64Þ

in which ½Mn� ¼ ½In� (see Eq. (46)), ½Dn� ¼ 2
%
x oref ½In� (see Eq. (50)) and where QðoÞ ¼

ðQ1ðoÞ;y;QnðoÞÞ is the random vector of the generalized co-ordinates and where
fðoÞ ¼ ðf1ðoÞ;y; fnðoÞÞ is the complex vector of the generalized external forces such that faðoÞ ¼Rþ1
�1 gðx;oÞu

a
ðxÞ dx: Let ½Kn�ab ¼

%
o2

a dab be the matrix defined by Eq. (50) which can be written as

½Kn� ¼ ½LKn
�T½LKn

�; ½LKn
�ab ¼

%
oa dab: ð65Þ

In Eq. (64), the random matrix ½Kparam
n � can be written as

½Kparam
n � ¼ ½LKn

�T ½Gparam
Kn

� ½LKn
�; ð66Þ

where the random matrix ½Gparam
Kn

� is such that

½Gparam
Kn

�ab ¼ %
k1

%
oa

%
ob

Z þ1

�1
Y ðxÞu00

a
ðxÞu00

b
ðxÞ dx þ %

k2

%
oa

%
ob

Z þ1

�1
TðxÞu

a
ðxÞu

b
ðxÞ dx: ð67Þ

From Eqs. (58), (47) and (65), one deduces that

½Gparam
Kn

� ¼ Ef½Gparam
Kn

�g ¼ ½In�: ð68Þ

In order to compare the non-parametric model with the parametric model, one introduces the
global dispersion parameter dparam

K > 0 of random matrix ½Gparam
Kn

� defined (see Eqs. (3)–(6)) by

dparam
K ¼

Efjj½Gparam
Kn

� � ½Gparam
Kn

� jj2Fg

jj½Gparam
Kn

�jj2F

( )1=2

: ð69Þ

The random generalized frequency response function associated with Eq. (64) is written as

½HnðoÞ
param� ¼ ð�o2 ½Mn� þ io ½Dn� þ ½Kparam

n �Þ�1: ð70Þ

Finally, the random observation defined by Eq. (53) is written as

Eparam
n ðoÞ ¼ jjo2½Hparam

n ðoÞ�jjF : ð71Þ
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4.4. Numerical analysis

Statistics related to stochastic process fEparam
n ðoÞ;oA½0;omax�g are estimated by using the

Monte Carlo numerical simulation. Let N be a fixed integer sufficiently high. It is assumed that
b ¼ Np=2: Domain ½�1;þ1� is discretized with the sampling space step D ¼ 2=N: In Eqs. (67), the
integrals are discretized as follows:

½Gparam
Kn

�CD
XN�1

n¼0

%
k1

%
oa

%
ob

Y ðxnÞu00
a
ðxnÞu00

b
ðxnÞ þ %

k2

%
oa

%
ob

TðxnÞua
ðxnÞub

ðxnÞ
� �

; ð72Þ

in which the sampling points in the space domain are

xn ¼ �1þ nD; n ¼ 0; 1;y;N � 1; ð73Þ

and where Y ðxnÞ and TðxnÞ are derived from Eq. (59). From Section 4.2, one then has to compute
independent realizations of stochastic process Zb: For N fixed, one wishes stochastic process Zb to
be Gaussian. Consequently, one uses the approximation ZN

b ðxÞ of ZbðxÞ defined by

ZN
b ðxÞ ¼

ffiffiffiffiffi
2d

p
Re

XN�1

c¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SZb

ðkcÞ
p

Rc e
�2ipUc�ikcx

(
g; Rc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�lnVc

p
; ð74Þ

in which Refzg denotes the real part of the complex number z and where d ¼ 2b=N is the
sampling wave number step such that d� D ¼ 2p=N (that is to say, d ¼ p). The sampling points
in the wave number domain are such that

kc ¼ �b þ ðcþ 1
2
Þd; c ¼ 0; 1;y;N � 1: ð75Þ

In Eq. (74), U0;U1;y;UN�1 and V0;V1;y;VN�1 are 2N independent uniform real-valued
random variables on ½0; 1�: With this choice of the parameter values, the FFT algorithm can be
used to compute the independent realizations of the RN-valued random vector
ðZN

b ðx0Þ;y;ZN
b ðxN�1ÞÞ:

4.5. Numerical parameters and computation

The Monte Carlo numerical simulation method is carried out with ns ¼ 40 000 realizations,
denoted by y1;yyns

: The realizations o/Eparam
n ðo; y1Þ; y; o/Eparam

n ðo; yns
Þ are numerically

calculated on the frequency band ½0;omax� with omax ¼ 2p� 0:22 rad=s and with a sampling
frequency step Do ¼ omax=300: The values of the numerical parameters are n ¼ 30; mY ¼ mT ¼
4; N ¼ 512; L ¼ 0:076m; d ¼ p ¼ 3:1415m�1; D ¼ 2=N ¼ 0:0039m; b ¼ Np=2 ¼ 804:25 m�1 and
a ¼ 0:9896: Fig. 11 on the left displays the graph of power spectral density function k/SZb

ðkÞ
and Fig. 11 on the right displays the graph of autocorrelation function Z/RZb

ðkÞ: The
computation of parameter dparam

K defined by Eq. (69) yields dparam
K ¼ 0:4942C0:50:

Figs. 12 and 13 are relative to the frequency band ½0; 0:22�Hz: Fig. 12 on the left displays the
response n/log10

%
enð2pnÞ of the mean dynamic system (dashed line) calculated in Section 3.3 and

the graph of function n/dBparamðnÞ (thick solid line) such that

dBparamðnÞ ¼ log10ðEfE
param
n ð2pnÞgÞ: ð76Þ
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Fig. 12. Parametric approach. Dispersion parameter dparam
K ¼ 0:4942: Frequency band ½0 ; 0:22�Hz (horizontal axis).

Figure on the left: graphs of functions n/log10
%
enð2pnÞ (dashed line) and n/dBparamðnÞ (thick solid line). Figure on the

right: graph of function n/sEparam
n

ð2pnÞ (solid line).
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Fig. 11. Figure on the left: graph of power spectral density function k/SZb
ðkÞ: Figure on the right: graph of

autocorrelation function Z/RZb
ðkÞ:
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Fig. 13. Parametric approach. Dispersion parameter dparam
K ¼ 0:4942: Frequency band ½0; 0:22�Hz (horizontal axis).

Graphs of functions n/dBparamðnÞ (dashed line), n/dBparam
max ðnÞ (upper solid line) and n/dB

param
min ðnÞ (lower solid line).
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Fig. 12 on the right displays the graph of the function n/sEparam
n

ð2pnÞ (solid line) in which
sEparam

n
ðoÞ is the standard deviation of random variable Eparam

n ðoÞ: Fig. 13 displays the graphs of
functions n/dBparamðnÞ (dashed line), n/dBparam

max ðnÞ (upper solid line) and n/dB
param
min ðnÞ (lower

solid line) in which

dBparam
max ðnÞ ¼ log10 max

k
Eparam

n ð2pn; ykÞ
� �

; ð77Þ

dB
param
min ðnÞ ¼ log10 min

k
Eparam

n ð2pn; ykÞ
� �

: ð78Þ

4.6. Comparison of the parametric model with the non-parametric model

Due to the fact that dK ¼ 0:50Cdparam
K ¼ 0:4942; one can compare the results given by the non-

parametric approach (Figs. 9 and 10) with the results given by the parametric approach (Figs. 12
and 13). These figures clearly prove that the non-parametric results look like the parametric
results when the ‘‘positive-definite’’ ensemble is used and is very different in the low-frequency
domain when the GOE is used. Consequently, the present results give an additional validation
point of the non-parametric model of random uncertainties for which the theory is recalled in
Sections 1.1 and 1.2 and which is based on the ‘‘positive-definite’’ ensemble.

5. Conclusions

This paper gives a new validation point of the non-parametric theory of random uncertainties
in vibration analysis, recently introduced by the author. It is proved that the ‘‘positive-definite’’
ensemble of random matrices, which has been introduced in the context of the development of this
non-parametric approach, is well adapted to the low-frequency vibration analysis, while the use of
the Gaussian orthogonal ensemble (GOE) is not, particularly for strong values of the dispersion
parameter. In addition, as it is explained in previous papers devoted to the construction of this
non-parametric approach, the ‘‘positive-definite’’ ensemble allows random uncertainties to be
modelled for the damping operator while the GOE does not, in the present state of the art.
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